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�.�: Area
Objectives

“
1 Use sigma notation to write and evaluate a sum.

2 Understand the concept of area.

3 Approximate the area of a plane region.

4 Find the area of a plane region using limits.

Sigma Notation

Sigma Notation

The sum of  terms  is written as

where  is the index of summation,  is the th th term of the sum, and the upper and lower
bounds of summation are  and .



Summation Properties

Theorem Summation Formulas

Example 1: Evaluating a Sum

Evaluate  for  and .



Area
In Euclidean geometry, the simplest type of plane region is a rectangle. Although people o�ten say
that the formula for the area of a rectangle is

it is actually more proper to say that this is the de�nition of the area of a rectangle.

For a triangle 

The Area of a Plane Region
Example

Use �ve rectangles to �nd two approximations of the area of the region lying between the graph of

and the -axis between  and .

f (generic function with 1 method)

n = 5  a = 0  b = 2  method = Left

✅
❌

f(x) = 5 - x^21



Finding Area by the Limit De�nition

Find the area of a plane region bounded above by the graph of a nonnegative, continuous function

The region is bounded below by the x-axis and the le�t and right boundaries of the region are the
vertical lines  and 



To approximate the area of the region, begin by subdividing the interval into subintervals, each of
width

The endpoints of the intervals are

Let

De�ne an inscribed rectangle lying inside the  subregion
De�ne an circumscribed rectangle lying outside the  subregion

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of the areas of
the circumscribed rectangles is called an upper sum.

The actual area of the region lies between these two sums.

Example 4: Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of  and the axis
between  and .

n = 5  a = 0  b = 2  method = Left

f4 (generic function with 1 method)
f4(x) = x^21



Theorem Limits of the Lower and Upper Sums

Let  be continuous and nonnegative on the interval . The limits as  of both the lower
and upper sums exist and are equal to each other. That is,

    where

and  and  are the minimum and maximum values of  on the th subinterval.



De�nition Area of a Region in the Plane

Let  be continuous and nonnegative on the interval . The area of the region bounded by the
graph of  , the -axis, and the vertical lines  and  is

where

See the grpah

Example 5: Finding Area by the Limit De�nition

Find the area of the region bounded by the graph of  , the -axis, and the vertical lines
 and .

Example 7: A Region Bounded by the y-axis

Find the area of the region bounded by the graph of  and the -axis for .))



Midpoint �ule

Example 8: Approximating Area with the Midpoint Rule

Use the Midpoint Rule with  to approximate the area of the region bounded by the graph of
 and the -axis for .

2.0523443059540623

�.�: Riemann Sums and De�nite
Integrals

“  Objectives

1 Understand the de�nition of a Riemann sum.

2 Evaluate a de�nite integral using limits and geometric formulas.

3 Evaluate a de�nite integral using properties of de�nite integrals.

Riemann Sums

g (generic function with 1 method)

n = 4  a = 0  b = 1  method = Left

begin
f8(x)=sin(x)
Δx28 = π/4
A = Δx28*(f8(π/8)+f8(3π/8)+f8(5π/8)+f8(7π/8))

end

1
2
3
4
5

g(x) = √x1



De�nition of Riemann Sum

Let  be de�ned on the closed interval , and let  be a partition of  given by

where  is the width of the th subinterval

    If  is any point in the th subinterval, then the sum

is called a Riemann sum of  for the partition .



Remark

The width of the largest subinterval of a partition  is the norm of the partition and is denoted by
.

If every subinterval is of equal width, then the partition is regular and the norm is denoted by

For a general partition, the norm is related to the number of subintervals of  in the following
way.

Note that

De�nite Integrals

De�nition of De�nite Integral

If  is de�ned on the closed interval  and the limit of Riemann sums over partitions 

  exists, then  is said to be integrable on  and the limit is denoted by

   The limit is called the de�nite integral of  from  to . The number  is the lower limit of
integration, and the number  is the upper limit of integration.



Theorem Continuity Implies Integrability

If a function  is continuous on the closed interval , then  is integrable on . That is,

Theorem The De�nite Integral as the Area of a Region

If  is continuous and nonnegative on the closed interval , then the area of the region bounded
by the graph of , the -axis, and the vertical lines  and  is

Example 3: Areas of Common Geometric Figures

Evaluate each integral using a geometric formula.



Remark The de�nite integral is a **number**

It does not depend on . In fact, we could use any letter in place of  without changing the value
of the integral:

If , the integral  is the area under the curve  from  to .

 is the net area

😀 😀



Properties of De�nite Integrals

De�nitions Two Special De�nite Integrals

If  is de�ned at , then .

If  is integrable on , then .

Theorem Additive Interval Property

If  is integrable on the three closed intervals determined by  and , then

Theorem Properties of De�nite Integrals

If  and  are integrable on  and  is a constant, then the functions  and  are
integrable on , and

�. .

�. .



Theorem Preservation of Inequality

If  is integrable and nonnegative on the closed interval , then

If  and  are integrable on the closed interval  and  for every  in  , then

Examples:



�.�: The Fundamental Theorem of
Calculus

“  Objectives

1 Evaluate a de�nite integral using the Fundamental Theorem of Calculus.

2 Understand and use the Mean Value Theorem for Integrals.

3 Find the average value of a function over a closed interval.

4 Understand and use the Second Fundamental Theorem of Calculus.

5 Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus



Antidi�ferentiation and De�nite Integration

✒ 

de�nite integral
number

✒ 

inde�nite integral
function

Theorem The Fundamental Theorem of Calculus

If a function  is continuous on the closed interval  and  is an antiderivative of  on the
interval , then



Remark

We use the notation

Example 1: Evaluating a De�nite Integral

Evaluate each de�nite integral.



Example 3: Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

the -axis, and the vertical lines  and .

The Mean Value Theorem for Integrals



Theorem The Mean Value Theorem for Integrals

If  is continuous on the closed interval , then there exists a number  in the closed interval
 such that

Average Value of a Function

De�nition the Average Value of a Function on an Interval

If  is integrable on the closed interval , then the average value of  on the interval is

Example 4: Finding the Average Value of a Function

Find the average value of  on the interval .

The Second Fundamental Theorem of Calculus



Consider the following function

where  is a continuous function on the interval  and .

x = 



Example If 

Find 

Theorem The Second Fundamental Theorem of Calculus

If  is continuous on an open interval  containing , then, for every  in the interval,



Remarks

 is an antiderivative of 

Examples

Find the derivative of

(1) .

(2) .

(3) .

(4) .

💣 BE CAREFUL:

Evaluate 

Net Change Theorem

Question: If , then what does  represents?

Theorem The Net Change Theorem

If  is the rate of change of a quantity  , then the de�nite integral of  from  to 
gives the total change, or net change, of  on the interval .



There are many applications, we will focus on one

If an object moves along a straight line with position function , then its velocity is , so

Remarks

The acceleration of the object is , so

Example 10: Solving a Particle Motion Problem

A particle is moving along aline. Its velocity function (in ) is given by

a. What is the displacement of the particle on the time interval 1≤ t≤ 5?
b. What is the total distance traveled by the particle on the time interval 1≤ t≤ 5?

v (generic function with 1 method)
v(t) = t^3 - 10 * t^2 + 29 * t - 201



Saved animation to E:\Dropbox\KFUPMWork\Teaching\OldSemesters\Sem231\MATH102\less
ons\src\example_fps15.gif

�.�: The Substitution �ule

“  Objectives

1 Use pattern recognition to �nd an inde�nite integral.

2 Use a change of variables to �nd an inde�nite integral.

3 Use the General Power Rule for Integration to �nd an inde�nite integral.

4 Use a change of variables to evaluate a de�nite integral.

5 Evaluate a de�nite integral involving an even or odd function.

solve



Pattern Recognition

Theorem Antidi�ferentiation of a Composite Function

Let  be a function whose range is an interval , and let  be a function that is continuous on . If 
is di�ferentiable on its domain and  is an antiderivative of  on , then

Letting  gives  and

Substitution Rule says: It is permissible to operate with  and  a�ter integral signs as if they were
di�ferentials.

Example Find



Change of Variables for Inde�nite Integrals
Example: Find

The General Power �ule for Integration



Theorem The General Power Rule for Integration

If  is a di�ferentiable function of , then

 Equivalently, if , then

  Example: Find



Change of Variables for De�nite Integrals



Substitution: De�nite Integrals
Example: Evaluate



Example: Evaluate

Integration of Even and Odd Functions

Theorem Integration of Even and Odd Functions

Let  be integrable on .

If  is even , then

If  is odd , then

Example Find



�.�: The Natural Logarithmic Function:
Integration

“  Objectives

1 Use the Log Rule for Integration to integrate a rational function.

2 Integrate trigonometric functions.

Log �ule for Integration

Theorem Log Rule for Integration

Let  be a di�ferentiable function of .

Remark



Example 1: Using the Log Rule for Integration

Example 3: Finding Area with the Log Rule

Find the area of the region bounded by the graph of

the -axis, and the line .

Example 5: Using Long Division Before Integrating



Examples Find

Example 7: Solve the di�ferential equation

Solve

Integrals of Trigonometric Functions



Example 8: Using a Trigonometric Identity

Example 9: Derivation of the Secant Formula

�.�:Inverse Trigonometric Functions:
Integration

“  Objectives

1 Integrate functions whose antiderivatives involve inverse trigonometric
functions.

2 Use the method of completing the square to integrate a function.

3 Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric
Functions



Theorem Integrals Involving Inverse Trigonometric Functions

Let  be a di�ferential function of , and let .

Examples Find

➡

➡

➡

➡

➡

Completing the Square





Example 5: Completing the Square

Find

Example 6: Completing the Square

Find the area of the region bounded by the graph of

the -axis, and the lines  and .

�.�: Hyperbolic Functions

“  Objectives

1 Develop properties of hyperbolic functions (MATH101).

2 Di�ferentiate (MATH101) and integrate hyperbolic functions.

3 Develop properties of inverse hyperbolic functions (Reading only).

4 Di�ferentiate and integrate functions involving inverse hyperbolic functions.
(Reading only).



Circle: 

Hyperbola: 



De�nitions of the Hyperbolic Functions



Hyperbolic Identities



Theorem Di�ferentiation and Integration of Hyperbolic Functions

Theorem Let  be a di�ferentiable function of .

Example 4: Integrating a Hyperbolic Function

Find



�.�: Area of a Region Between Two
Curves
Objectives

“
1 Find the area of a region between two curves using integration.

2 Find the area of a region between intersecting curves using integration.

3 Describe integration as an accumulation process.

......

Area of a Region Between Two Curves

move  = 1



How can we �nd the area between the two curves?

Remark

Area = .

Example 1: Finding the Area of a Region Between Two Curves

Find the area of the region bounded above by , bounded below by , bounded on the
sides by  and .



Solution



Area of a Region Between Intersecting Curves
In geberal,

Example 2: A Region Lying Between Two Intersecting Graphs

Find the area of the region enclosed by the graphs of  and .

Solution in class



Example 3: A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the curves



Example 4: Curves That Intersect at More than Two Points

Find the area of the region between the graphs of

Integrating with Respect to 

Example 5: Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of  and .



�.�: Volume: The Disk Method

“  Objectives

Find the volume of a solid of revolution using the disk method.
Find the volume of a solid of revolution using the washer method.
Find the volume of a solid with known cross sections.

The Disk Method



Solids of Revolution

Volume of a disk

Disk Method



Taking the limit , we get

Disk Method

To �nd the volume of a solid of revolution with the disk method, use one of the formulas below



Example 1: Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

and the -axis ( ) about the -axis

Example 2: Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of

and  about the line .

The Washer Method



Washer Method



Example 3: Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

about the -axis.

Example 4: Integrating with Respect to `y`: Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

about the -axis

Solids with Known Cross Sections



Example 1 | Example 2

Volumes of Solids with Known Cross Sections

�. For cross sections of area  taken perpendicular to the -axis,

�. For cross sections of area  taken perpendicular to the -axis,

Example 6: Triangular Cross Sections

The base of a solid is the region bounded by the lines

The cross sections perpendicular to the -axis are equilateral triangles.

Exercise Find the volume of the solid obtained by rotating the region bounded by ,  , and
 about the -axis.

Exercise The region  enclosed by the curves  and  is rotated about the -axis. Find the
volume of the resulting solid.

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about
the line .

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about
the line .

https://www.geogebra.org/m/XFgMaKTy
https://www.geogebra.org/m/XArpgR3A


Exercise Figure below shows a solid with a circular base of radius . Parallel cross-sections
perpendicular to the base are equilateral triangles. Find the volume of the solid.

�.�: Volume: The Shell Method

“  Objectives

1 Find the volume of a solid of revolution using the shell method.

2 Compare the uses of the disk method and the shell method.

Problem Find the volume of the solid generated by rotating the region bounded by 
and  about the axis.

Step 1:  Step 2:  Step 3: 

""

The Shell Method



A shell is a hallow circular cylinder

Cylindrical Shells Illustration

Shell MethodShell Method

https://www.youtube.com/watch?v=JrRniVSW9tg


Horizontal Axis of Revolution Vertical Axis of Revolution

Example: Find the volume of the solid generated by rotating the region bounded by 
and  about the axis.

Solution:

Example : Find the volume of the solid obtained by rotating about the axis the region between
 and .



Example: Find the volume of the solid obtained by rotating the region bounded by  and
 about the line .

Example 4: Shell Method Preferable

Find the volume of the solid formed by revolving the region bounded by the graphs of

about the -axis.

Example 5: Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of ,
, and  about the line .

�.�: Arc Length and Surfaces of
Revolution

“  Objectives

1 Find the arc length of a smooth curve.

2 Find the area of a surface of revolution.

Arc Length



De�nition Arc Length

Let the function  represents a smooth curve on the interval . The arc length of 
between  and  is

Similarly, for a smooth curve , the arc length of  between  and  is

Example 2: Finding Arc Length

Find the arc length of the graph of  on the interval .

Example 3: Finding Arc Length

Find the arc length of the graph of  on the interval .

Example 4: Finding Arc Length

Find the arc length of the graph of  from  to .

Area of a Surface of Revolution

De�nition Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting surface is a surface
of revolution.



Surface Area of frustum

Consider a function  that has a continuous derivative on the interval . The graph of  is revolved
about the -axis

Surface Area Formula

De�nition Area of a Surface of Revolution

Let  have a continuous derivative on the interval .



The area  of the surface of revolution formed by revolving the graph of  about a horizontal or
vertical axis is

where  is the distance between the graph of  and the axis of revolution.

If  on the interval  , then the surface area is

where  is the distance between the graph of  and the axis of revolution.



Remark

The formulas can be written as

and

where

Example 6: The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of  on the interval  about the
-axis.

Example 7: The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of  on the interval  about
the -axis.

�.�: Basic Integration �ules

“  Objectives

1 Review procedures for �tting an integrand to one of the basic integration rules.



Review of Basic Integration Rules ( )





Example 3:

Find .

Example 4: A Disguised Form of the Log Rule

Find .

�.�: Integration by Parts

“  Objectives

1 Find an antiderivative using integration by parts.

The integration rule that corresponds to the Product Rule for di�ferentiation is called integration by parts

Inde�nite Integrals

Theorem Integration by Parts

If  and  are functions of  and have continuous derivatives, then



Example 1: Integration by Parts

Find .

Example 2: Integration by Parts

Find .

Example 3: An Integrand with a Single Term

Evaluate .

Example 4: Repeated Use of Integration by Parts

Find .

Example 5: Integration by Parts

Find .s

Example 7: Using the Tabular Method

Find .



�.�: Trigonometric Integrals

“  Objectives

1 Solve trigonometric integrals involving powers of sine and cosine.

2 Solve trigonometric integrals involving powers of secant and tangent.

3 Solve trigonometric integrals involving sine-cosine products.

RECALL

Integrals of Powers of Sine and Cosine

 is , write as . Example: 

 is , write as . Example 

 and  are , use formulae (Example  and )



Example 1: Power of Sine Is Odd and Positive

Find .

Example 2: Power of Cosine Is Odd and Positive

Evaluate .

Example 3: Power of Cosine Is Even and Nonnegative

Find .

Integrals of Powers of Secant and Tangent

 is even, write as . Example 

 is odd, write as . Example .

Example 4: Power of Tangent Is Odd and Positive

Find .

Example 5: Power of Secant Is Even and Positive

Find .



Example 6: Power of Tangent Is Even

Evaluate .

Example 7: Converting to Sines and Cosines

Find .

Integrals Involving Sine-Cosine Products

Example 8: Using a Product-to-Sum Formula

Find .

�.�: Trigonometric Substitution

“  Objectives

1 Use trigonometric substitution to �nd an integral.

2 Use integrals to model and solve real-life applications.

Trigonometric Substitution

We use trigonometric substitution to �nd integrals involving the radicals



Example 1: Trigonometric Substitution

Find .

Example 2: Trigonometric Substitution

Find .

Example 3: Trigonometric Substitution: Rational Powers

Find .

Example 4: Converting the Limits of Integration

Find .

Applications

Example 5: Finding Arc Length

Find the arc length of the graph of  from  to .



�.�: Partial Fractions

“  Objectives

1 Understand the concept of partial fraction decomposition.

2 Use partial fraction decomposition with linear factors to integrate rational
functions.

3 Use partial fraction decomposition with quadratic factors to integrate rational
functions.

Partial Fractions
We learn how to integrate rational function: quotient of polunomial.

How?

◾ STEP 0 : if degree of  is greater than or equal to degree of  goto STEP 1, else GOTO STEP 2.

◾ STEP 1 : Peform long division of  by  to get

and apply STEP 2 on .

◾ STEP 2 : Write the partial fractions decomposition

◾ STEP 3 : Integrate



Partial Fractions Decomposition

We need to write  as sum of partial fractions by factor . Based on the factors, we write the
decomposition accoding to the following cases

case 1:  is a product of distinct linear factors. we write

then there exist constants  such that

case 2:  is a product of linear factors, some of which are repeated. say �rst one

then there exist constants  such that

case 3:  contains irreducible quadratic factors, none of which is repeated. say we have (Note: the
quadratic factor  is irreducible if ). For eaxmple if

then there exist constants  and  such that

case 4:  contains irreducible quadratic factors, some of which are repeated. For example if

then there exist constants  and  such that



Example: Partial Fractions

Write out the form of the partial fractions decomposition of the function

More Examples

Find

Remarks



Rationalizing Substitutions Find

�.�: Rational Functions of Sine &
Cosine
Special Substitution ( ) (for rational functions of  and )

�.�: Improper Integrals

“  Objectives

Evaluate an improper integral that has an in�nite limit of integration.
Evaluate an improper integral that has an in�nite discontinuity.

Do you know how to evaluate the following?



Improper Integrals with In�nite Limits of
Integration

De�nition of an Improper Integral of Type 1

(a) If  exists for every number , then

provided this limit exists (as a �nite number).

(b) If  exists for every number , then

provided this limit exists (as a �nite number).

The improper integrals  and  are called convergent if the corresponding
limit exists and divergent if the limit does not exist.

(c) If both  and  are convergent, then we de�ne

In part (c) any real number can be used



Example: Determine whether the following integrals are convergent or divergent.

t = 1

p = 1.0



Remark

Improper Integrals with In�nite
Discontinuities



De�nition of an Improper Integral of Type 2

(a) If  is continuous on  and is discontinuous at , then

provided this limit exists (as a �nite number).

(b) If  is continuous on  and is discontinuous at , then

provided this limit exists (as a �nite number).

The improper integral  is called convergent if the corresponding limit exists and
divergent if the limit does not exist.

(c) If  has a discontinuity at , where , and both  and  are
convergent, then we de�ne

Example:



Example 9: Doubly Improper Integral

Evaluate 

�.�: Sequences

“  Objectives

Write the terms of a sequence.
Determine whether a sequence converges or diverges.
Write a formula for the th term of a sequence.
Use properties of monotonic sequences and bounded sequences.

Sequence: A sequence can be thought of as a list of numbers written in a de�nite order:

: �rst term,
: second term,
: third term,

:  term,

For example:

Notation:

 or



More examples

,  ,  (Fibonacci sequence)

n = 1

Visualization

�. On a number line (as above)
�. By plotting graph

n = 1



n = 1

n = 4



What are trying to study?

convergence (what happended when  gets larger and larger )

For Example 1: , it is fair to say and write

 = 1.0 n = 1



Example

 = 0.0 n = 1

 0.0



Remark:

Limit of a Sequence

De�nition of the Limit of a Sequence

Let  be a real number. The limit of a sequence L``, written as

if for each , there exists  such that  whenever . If the limit  of a
sequence exists, then the sequence converges to . If the limit of a sequence does not exist, then
the sequence diverges.



Theorem Limit of a Sequence

If

then

Remark

Limit Laws for Sequences Suppose that  and  are convergent sequences and  is a constant.
Then

�. Sum Law

�. Di�ference Law

�. Constant Multiple Law

�. Product Law

�. Quotient Law



Power Law

Squeeze Theorem for Sequences

If  for  and , then

Theorem

If

then

Theorem

If  and the function  is continuous at , then

Remark

The sequence  is convergent if  and divergent for all other values of .



Examples

Find

�. 
�. 
�. 
�. 
�. 
�. 
�. 
�. 
�. 

Exercise

Pattern Recognition for Sequences
Example

Find a sequence  whose �rst �ve terms are

and then determine whether the sequence you have chosen converges or diverges.

Example

Find a sequence  whose �rst �ve terms are

and then determine whether the sequence you have chosen converges or diverges.



Monotonic and Bounded Sequences
De�nition

A sequence  is called increasing if  for all , that is,  .
It is called decreasing if  for all .
A sequence is called monotonic if it is either increasing or decreasing.

Examples

Is the following increasing or decreasing?

�. .

�. .

De�nition

A sequence  is bounded above if there is a number  such that

A sequence is bounded below if there is a number  such that

If a sequence is bounded above and below, then it is called a bounded sequence.

Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.

In particular, a sequence that is increasing and bounded above converges, and a sequence that is
decreasing and bounded below converges.

Example



�.�: Series and Convergence

“  Objectives

Understand the de�nition of a convergent in�nite series.
Use properties of in�nite geometric series.
Use the th-Term Test for Divergence of an in�nite series.

In�nite Series

Consider the sequence . The expression

is called an in�nite series (or simply series) and we use the notation

To make sense of this sum, we de�ne a related sequence called the sequence of partial sums
 as

and give the following de�nition



De�nition

Given a series  , let denote its th partial sum:

If the sequence  is convergent and  exists as a real number, then the series
is called convergent and we write

The number  is called the sum of the series.

If the sequence  is divergent, then the series is called divergent.

Remark

Exercise Assume that  is a sequence.

�. Find

�. Can you �nd ?



Solution

�. We �nd �rst

since the sequence  converges to , then the series converges and its sum is

�. Note that

so,

Telescoping sum
Find the sum of the following series

Solution in class

Recall

So  converges if  and diverges otherwise



Geometric Series
The series

is called the geometric series with common ration 

It is convergent if  and its sum is

and divergent if .

Remark In words: the sum of a convergent geometric series is

Examples

�. Find the sum of the geomtric series

�. Is the series

�. Write  as rational number (ratio of integers).
�. Find the sum of the series



Test for Divergence
Example Show that the harmonic series

is divergent.

Theorem If the series

converges, then

Proof

Divergence Test

Example



Properties of Convergent Series
Theorem If  and  are convergent series, then so are the series  (where  is a
constant), , and , and

Remark

If it can be shown that

is convergent. Then

is convergent.



�.�: The Integral Test and -Series

“  Objectives

Use the Integral Test to determine whether an in�nite series converges or diverges.
Use properties of -series and harmonic series.

The Integral Test and Estimates of Sums

Suppose  a function that is

�. continuous on ,
�. positive on ,
�. decreasing on 

and let . Then the series

is convergent if and only if the improper integral

is convergent. In other words:

�. If  is convergent, then is  convergent.

�. If  is divergent, then is  divergent.

Examples

Test for convergence

Solution in class



Remark

P-series and the Harmonic Series

�.  is divergent; because it is a series with .

�.  is convergent; because it is a series with .

Example

Show that

is divergent.



Estimating the Sum of a Series
Suppose that the integral test is used to show that

is convergent. So its sequenc of partial sums  is convergent; that is

So we can write

 is the Remainder or the error when  is used to approximate .





(0.005, 0.00413223)

Remainder Estimate for the Integral Test Suppose , where  is a continuous, positive,
decreasing function for  and  is convergent. If , then

�.�: Comparisons of Series

“  Objectives

Use the Direct Comparison Test to determine whether a series converges or diverges.
Use the Limit Comparison Test to determine whether a series converges or diverges.

The Comparison Tests

The Direct Comparison Test
Suppose that  and  are series with positive terms.

If  is convergent and  for all , then  is also convergent.
If  is divergent and  for all  , then is  also divergent

Remarks

Most of the time we use one of these series:
series 

geometric series.

Examples Test for convegence

1/200, 1/2421



The Limit Comparison Test
Suppose  that and  are series with positive terms. If

where  is a �nite number and , then either both series converge or both diverge.

Remark

Exercises 40  and 41  deal with the cases  and  .

Examples Test for convegence

Exercises

Test for convegence



�.�: Alternating Series

“  objectives

Use the Alternating Series Test to determine whether an in�nite series converges.
Use the Alternating Series Remainder to approximate the sum of an alternating
series.
Classify a convergent series as absolutely or conditionally convergent.
Rearrange an in�nite series to obtain a di�ferent sum.

An alternating series is a series whose terms are alternately positive and negative. For examples:

Alternating Series Test

If the alternating series

satis�es the conditions

then the series is convergent.

n = 1



Example Test for convegrnce

Estimating Sums of Alternating Series
If , where , is the sum of an alternating series that satis�es

then



Example How many terms of the series

do we need to add in order to �nd the sum accurate with ?

Absolute Convergence and Conditional Convergence

A series  is called absolutely convergent if the series of absolute values  is
convergent.
A series  is called conditionally convergent if it is convergent but not absolutely
convergent; that is,  if converges but  diverges.

Theorem

If a series  is absolutely convergent, then it is convergent.

Examples Determine whether the series is absolutely convergent, conditionally convergent, or
divergent



�.�: The Ratio and Root Tests

“  Objectives

Use the Ratio Test to determine whether a series converges or diverges.
Use the Root Test to determine whether a series converges or diverges.
Review the tests for convergence and divergence of an in�nite series.

The Ratio Test

The Root Test



Examples Test for convergence

[-1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0]

�.�: Taylor Polynomials and
Approximations

“  Objectives

Find polynomial approximations of elementary functions and compare them with
the elementary functions.
Find Taylor and Maclaurin polynomial approximations of elementary functions.
Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary
Functions
For the function , �nd a �rst-degree polynomial function  whose value
and slope agree with the value and slope of at .

Show
Hide

n = 0

[cos(π*n) for n in 1:10]1



Taylor and Maclaurin Polynomials

De�nitions of th Taylor Polynomial and th Maclaurin Polynomial

If  has  derivatives at , then the polynomial

is called the th Taylor polynomial for  at . If , then

is also called th th Maclaurin polynomial for .



Example 3: A Maclaurin Polynomial for e^x



Example 4: Finding Taylor Polynomials for lnx

Find the Taylor polynomials , and  for

centered at .

Example 5: Finding Maclaurin Polynomials for cosx

Find the Taylor polynomials , and  to approximate .

Example 6: Finding Taylor Polynomials for sin x

Find the Taylor polynomial for

centered at .

Example 7: Approximation Using Maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of .

�.�: Power Series

“  Objectives -Understand the de�nition of a power series.

Find the radius and interval of convergence of a power series.
Determine the endpoint convergence of a power series.
Di�ferentiate and integrate a power series.

A series of the form

is called a power series in  or a power series centered at  or a power series about 

We are interested in �nding the values of  for which this series is convergent.



Radius and Interval of Convergence

Theorem For a power series , there are only three possibilities:

(i) The series converges only when .

(ii)The series converges for all .

(iii) There is a positive number  such that the series converges if  and diverges if
.

Remarks

The number  is called the radius of convergence of the power series.
The radius of convergence is  in case (i)

 in case (ii).
The interval of convergence of a power series is the interval that consists of all values of for
which the series converges.

In case (i) the interval consists of just a single point .
In case (ii) the interval is .

Examples:

Endpoint Convergence



Examples
Find the radius of convergence and interval of convergence of the series

Di�erentiation and Integration of Power
Series
(term-by-term di�ferentiation and integration)

Theorem

If the power series  has radius of convergence , then the function  de�ned by

is di�ferentiable (and therefore continuous) on the interval  and

The radii of convergence of the power series in Equations (i) and (ii) are both .



Example 8: Intervals of Convergence

Consider the function

Find the interval of convergence for each of the following.

�. 
�. 

�. 

�.�: Representation of Functions by
Power Series

“  Objectives

Find a geometric power series that represents a function.
Construct a power series using series operations.

Geometric Power Series



Examples

�. Express as the sum of a power series and �nd the interval of convergence.

�. Find a power series representation for

�. Find a power series representation for

�. Find a power series representation around  for

SOLUTION IN CLASS

Operations with Power Series

Let  and .

�. .

�. .

�. .



Examples

�. Express as a power series

�. Express as a power series

�. Express as a power series

�. Express as a power series

�. Evaluate

�. Approximate 

SOLUTION IN CLASS



�.��: Taylor and Maclaurin Series
[^⭐]
[^⭐]: Students have to memorize the power series representations of the functions

 in page 674.

“  Objectives

Find a Taylor or Maclaurin series for a function.
Find a binomial series.
Use a basic list of Taylor series to �nd other Taylor series.

By the end of this section we will be able to write the following power series representations of
certain functions



Theorem Taylor Theorem

If  has a power series representation (expansion) at  , that is, if

then its coe��cients are given by the formula

Remarks

The series is called the Taylor series of the function  at  (or about  or centered at ).
(Maclaurin Series) If , Taylor series becomes

Examples (important)

Find Maclaurin series for

Find Taylor Series of  about .

The Binomial Series
Example: Find the Maclaurin series for , where  is any real number.

Solution: In Class



The Binomial Series (Theorem)

If  is any real number and , then

where

Remarks

This is called binomial coe��cients. Note that

If , it converges at .
If  it converges at .

Example
Find the Maclaurin series for the function

and its radius of convergence.



Deriving Taylor Series from a Basic List
Check the table

Examples

Find the Maclaurin series for

Find the function represented by the power series

Find the sum of the series

More Examples

Evaluate

Evaluate

Find the �rst 3 nonzero terms of Maclaurin series for

Find the sum of



begin
using FileIO, ImageIO, ImageShow, ImageTransformations
using SymPy
using PlutoUI
using CommonMark
using Plots, PlotThemes, LaTeXStrings
using HypertextLiteral
using Colors
using Random

end

: @htl, @htl_str
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