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5.2: Area

Objectives

«

Use sigma notation to write and evaluate a sum.
Understand the concept of area.
Approximate the area of a plane region.

Find the area of a plane region using limits.

Sigma Notation

The sum of nterms a1, asg, - - - , @y, is written as

Zai:a1+a2+"'+an
=1

where ¢ is the index of summation, a; is the th ¢th term of the sum, and the upper and lower
bounds of summation are n and 1.



Z ka; = k Z a;
i=1 i=1
n n n
Z:(a,z +b;) = Z a; + Z b;
i=1 =1 =1

I Summation Formulas

(1) Z c=cn, cisaconstant

3) z”:i2 _ n(n+1)(2n + 1)

i=1 6

i=1

I Example1: Evaluatinga Sum

n

i1
Fvaluate ’:; form = 10, 100, 1000 and 10, 000.
=1




Area

In Euclidean geometry, the simplest type of plane region is a rectangle. Although people often say
that the formula for the area of a rectangle is

A =bh
it is actually more proper to say that this is the definition of the area of a rectangle.

For a triangle A = %bh

F'--'-- -"-"-"--'-ﬂ

—

e - - o - e e e e .

I

The Area of a Plane Region

Example

Use five rectangles to find two approximations of the area of the region lying between the graph of

f(z) =5 — 2
and the z-axis between x = Qand x = 2.
f (generic function with 1 method)
f(x) =5 - x*2
n=5 a=0 b=2 ‘method = Left v




Finding Area by the Limit Definition

Find the area of a plane region bounded above by the graph of a nonnegative, continuous function

y = f(z)
The region is bounded below by the x-axis and the left and right boundaries of the region are the

vertical linesz = aandx = b

¥
'

Jim)




e Toapproximate the area of the region, begin by subdividing the interval into subintervals, each of
width

e Theendpoints of the intervals are

a=xg a=x a==T2 a=Ty
AN N\ N\

- N - ~ - ~ —N—
a+0(Az) <a+1(Az) <a+2(Az) < --- < a+n(Az).

e let

f(m;) = Minimum value of f(z) on the i*® subinterval

f(M;) = Maximum value of f(z) on the i‘® subinterval

o Define aninscribed rectangle lying inside the i*® subregion
« Define an circumscribed rectangle lying outside the £*! subregion

(Area of inscribed rectangle) = f(m;)Az < f(M;)Az = (Area of circumscribed rectangle)

e The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of the areas of
the circumscribed rectangles is called an upper sum.

n
Lower sum = s(n) = Z f(m;)Az Area of inscribed rectangle
=1
Uppersum = S(n) = Z f(M;)Az Area of circumscribed rectangle
=1

e Theactual area of the region lies between these two sums.

s(n) < (Area of region) < S(n).

I Example 4: Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(z) = 22 and the z—axis
betweenz = Qandz = 2.

n=5 a=0 b=2 ‘method = Left v

f4 (generic function with 1 method)
fa(x) = x*2



I Theorem Limits of the Lower and Upper Sums

Let f be continuous and nonnegative on the interval [a, b]. The limits as n — oo of both the lower
and upper sums exist and are equal to each other. That is,

lim s(n) = JLI&;f(mz)Am = nlg{)lo; f(M;)Az = nll_)rf)lo S(n)

n—00

where

and f(m;) and f(M;) are the minimum and maximum values of f on the ith subinterval.



I Area of a Region in the Plane

Let f be continuous and nonnegative on the interval [a, b]. The area of the region bounded by the
graph of f, the z-axis, and the vertical linesz = aandy = bis

Area = T}I_)I{.lo ,z:; f(c;)Az
where

ri1<c¢; <z and Az =

See the grpah

I Example 5: Finding Area by the Limit Definition

Find the area of the region bounded by the graph of f(z) = x3 | the z-axis, and the vertical lines
z=0andz =1

I Example7:  ARegion Bounded by the y-axis

Find the area of the region bounded by the graph of f(y) = y? and the y-axis for 0 < y < 1.))



Midpoint Rule

Area ~ Zf (@)A:c
i=1

I Example 8: Approximating Area with the Midpoint Rule

Use the Midpoint Rule with m = 4 to approximate the area of the region bounded by the graph of
f(z) = sinx and the z-axis for0 < z < .

2.0523443059540623

begin

f8(x)=sin(x)

Ax28 = m/4

A = Ax28x%(f8(m/8)+f8(3m/8)+f8(5m/8)+f8(7m/8))
end

5.3: Riemann Sums and Definite
Integrals

¢¢ Objectives

Understand the definition of a Riemann sum.
Evaluate a definite integral using limits and geometric formulas.

Evaluate a definite integral using properties of definite integrals.

Riemann Sums

g (generic function with 1 method)

g(x) = Vx

n=4 a=0 b= 1 ‘method = Left v




1.00

T

s(4) = 0.518283
0.75

T

0.50

T

0.25+

T

0.25 0.50 0.75 1.00

I Definition of Riemann Sum
Let f be defined on the closed interval [a, b], and let A be a partition of [a, b] given by

A=) <1 <x3<+<Tp1<xTp=0>

where Axz; is the width of the th subinterval

[€;—1,%;] ith subinterval

If ¢; is any point in the th subinterval, then the sum

n
) fle)Azi, i1 <ci<w

i=1

is called a Riemann sum of f for the partition A.



Remark

The width of the largest subinterval of a partition A is the norm of the partition and is denoted by
Al

 Ifeverysubinterval is of equal width, then the partition is regular and the norm is denoted by

b—
|A|| = Az = o—a Regular partition
n

e Forageneral partition, the norm is related to the number of subintervals of [a, b] in the following
way.

b—a
|A]

< n General partition

e Note that

|A|| = 0 implies that n — oo.

Definite Integrals

If f is defined on the closed interval [a, b] and the limit of Riemann sums over partitions A
lim c;)Az;
INE Z fle) Az

exists, then f is said to be integrable on [a, b] and the limit is denoted by

n b
lim Zf(ci)Awi:/a f(z)dz.

1A]=0 &=

The limit is called the definite integral of f from a to b. The number a is the lower limit of

integration, and the number b is the upper limit of integration.



I Continuity Implies Integrability

If a function f is continuous on the closed interval [a, b], then f is integrable on [a, b]. That is,

b
/ f(z)dz exists.

I The Definite Integral as the Area of a Region

If f is continuous and nonnegative on the closed interval [a, b], then the area of the region bounded
by the graph of f, the z-axis, and the vertical linesz = aandx = bis

Area = /b f(z)dz

I Example 3: Areas of Common Geometric Figures

Evaluate each integral using a geometric formula.

3

. / 4dx
1

0 / (z+ 2)dx
0

-/ V4 — z%dzx
-2



The definite integral is a **number**

e |tdoesnotdependon . In fact, we could use any letter in place of & without changing the value
of the integral:

/abf(x)d:z: = /abf(y)dy = /abf('w)dw = /abf()d

e If f(z) > 0, the integral f: f(x)dz is the area under the curve y = f(z) fromato d.

4T Y

_1__
. f: f(z)dz is the net area

VA

y =)

y=flx)
[—F-H 1747:|7_| | + +

=y

0f a Dt{_f h x 0l a _ ;




Properties of Definite Integrals

I Two Special Definite Integrals

o If fisdefinedatz = a, then/ f(z)dz = 0.

o If fisintegrable on [a, b], then /ba f(z)de = — /b f(z)dez.

I Additive Interval Property

If f is integrable on the three closed intervals determined by a, b and ¢, then

/a " He)de = / " f(o)dz + / ' He)de.

I Properties of Definite Integrals

o If fand gareintegrable on [a, b] and kis a constant, then the functions kf and f & gare
integrable on [a, b], and

1./ab kf(xz)dz = k/ab f(z)dez.
5 / ' f(2) + g(2))de = / ’ Ha)de + / ’ g(@)de.



Preservation of Inequality

e If fisintegrable and nonnegative on the closed interval [a, b], then

0< /ab f(z)dz.

o If fand gareintegrable on the closed interval [a, b] and f(z) < g(z) forevery zin[a, b] , then

/ab f(z)dz < /ab g(z)dz.




5.4: The Fundamental Theorem of
Calculus

¢¢ Objectives

Evaluate a definite integral using the Fundamental Theorem of Calculus.
Understand and use the Mean Value Theorem for Integrals.

Find the average value of a function over a closed interval.

Understand and use the Second Fundamental Theorem of Calculus.

Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus



Antidifferentiation and Definite Integration

Py = —-—-

Area of
rectansle

Tangent
lime
------ 5-; -
s e Ax Area = AyAx
{a) Differentiation {(b) Definite integration
b
o mc / f(z)dz
a
o definite integral
o number
o mc / f(z)dz
o indefinite integral
o function
I The Fundamental Theorem of Calculus

Area of
region
under
curve

Area = AyAx

If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the

interval [a, b], then

b
/a f(z)de = F(b) — F(a).




We use the notation
b
= F(b) — F(a) or

[ eie = Fia)

I Evaluating a Definite Integral

Evaluate each definite integral.

. /12(:v2 —3)dz

4
. / 3vzdx
1

w/4
. / sec? zdx
0

2
. / ‘23; — 1|da:
0




I Example 3: Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

y=—
&

the z-axis, and the vertical linesz =1 and z = e.

1.2+

0.9+

0.6 +

The Mean Value Theorem for Integrals



I The Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number ¢ in the closed interval
[a, b] such that

b
/a f(z)dz = £()(b — a).

3

-

fe)

[
I
I
[
L
i

i i

Average Value of a Function

I the Average Value of a Function on an Interval

If f is integrable on the closed interval [a, b], then the average value of f on the interval is

b
Avergae value = ﬁ / f(z)dz

I Example 4: Finding the Average Value of a Function

Find the average value of f(z) = 322 — 2z on the interval [1, 4].

The Second Fundamental Theorem of Calculus



The Definite Integral as a Number  The Definite Integral as a Function of x

| Constant Fis a function of x.

[H v
j Slx) dx Flx) = J‘ Sl dt

fisa fisa
Constant function of x. Constant function of 1.

Consider the following function

F(z) = / f(t)dt
where f is a continuous function on the interval [a, b] and z € [a, b].
x=@

st Y




Example If g(z) = [ f(t)dt

— 2

\ y = flt)
!
0 1 2 \ 4

~ Y

Find g(2)

I Theorem The Second Fundamental Theorem of Calculus

If f is continuous on an open interval I containing a, then, for every « in the interval,

[ 0] = 1@,



Remarks

% ([o flw)du) = f(z)

e g(z) is an antiderivative of f
Examples

Find the derivative of

1) g1(z) = [y V1 +tdt.

@ ga(z) = [, V1T tdt.

(3) gs(z) = f(,””2 V1 + tdt.
@ 9a(2) = [0y VI Fidt,

@' BE CAREFUL:
Evaluate ff3 %dw
Net Change Theorem

Question: If y = F(z), then what does F'(z) represents?
I The Net Change Theorem

If F'(x) is the rate of change of a quantity F'(z) , then the definite integral of F'(z) froma to b
gives the total change, or net change, of F\(z) on the interval [a, b].

/ ’ F'(z)dz = F(b) — F(a)  Net change of F(z)



e There are many applications, we will focus on one

If an object moves along a straight line with position function s(t), then its velocity is v(t) = s(t), so

/t " o(t)dt = s(ta) — s(t1)

1

e Remarks
12
displacement = / v(t)dt
ty

to
total distance traveled = / lv(t)|dt
t

1

e Theacceleration of the objectis a(t) = v'(t), so

ta
/ a(t)dt = v(t2) —v(t;) is the change in velocity from time to time .
t

1

I Example1o: Solving a Particle Motion Problem

A particle is moving along aline. Its velocity function (in m/s2) is given by
v(t) = 3 — 102 + 29¢ — 20,
a. What is the displacement of the particle on the time interval 1S t<5?

b. What is the total distance traveled by the particle on the time interval 1S t< 5?

v (generic function with 1 method)
v(t) = t"3 - 10 % tA2 + 29 * t - 20



ne=1.0

Velocity Graph

Saved animation to E:\Dropbox\KFUPMWork\Teaching\OldSemesters\Sem231\MATH102\less
ons\src\example_fpsi5.gif

5.5: The Substitution Rule

¢¢ Objectives

Use pattern recognition to find an indefinite integral.

Use a change of variables to find an indefinite integral.

Use the General Power Rule for Integration to find an indefinite integral.
Use a change of variables to evaluate a definite integral.

Evaluate a definite integral involving an even or odd function.

solve

f2zvV1+ 22 dz [Vu du



Pattern Recognition

I Antidifferentiation of a Composite Function

Let g be a function whose range is an interval I, and let f be a function that is continuous on I. If g

is differentiable on its domain and F'is an antiderivative of f on I, then

[ fa(@)g @)dz = Fg(e)) + C.

Letting u = g(z) gives du = ¢'(x)dz and

/f(u)du = F(u) +C.

Outside function

i
j fle(x))e'(x) dx = Flglx)) + C
-

T

Inside function

Derivative of
inside function

Substitution Rule says: It is permissible to operate with dz and du after integral signs as if they were

differentials.

Example Find

@) [(=®+1)°(2z)dw

(i1)  [5e°*dz

(i) [—Zda
(iv) [V1+a? zdz

(v) [tanzdz



Change of Variables for Indefinite Integrals

Example: Find

(?) [v2z-1ldz
(i) [zv2z —1dz

(i41) [ sin® 3z cos 3zdzx

The General Power Rule for Integration



I The General Power Rule for Integration

If g is a differentiable function of z, then

/ [9()]"d (z)da = ls@] ~ +C,

n+1

Equivalently, if u = g(z), then

un—l—l
/u”du=n +C, n#-1

+1

Example: Find
(i)  [3(3z—1)dz

(#3)  [(e® +1)(e® + z)dz

(4i1) [32 V3 —2dz

(iv) / (1__;;22)2 dz

(v) [cos’zsinz dz




Change of Variables for Definite Integrals



Substitution: Definite Integrals

Example: Evaluate

1.0

0.5

—0.51

-1.0-

1
il dx
T

-1.0-+-



Example: Evaluate

() fl (3-5z)% 5:c)
(i5) [, 2(2? +1)3 dz

(iv) fl \/wa

Integration of Even and Odd Functions

I Integration of Even and Odd Functions

Let f be integrable on [—a, a.
o If fiseven[f(—z) = f(x)]. then
. f(z)dz = 2/0 f(z)d=
o If fisodd [f(—x) = —f(z)], then

’ f(x)dz =0

—a

Example Find

/1 tanx
———dzx
-1 14 x2 + x4



5.7: The Natural Logarithmic Function:
Integration

¢¢ Objectives

Use the Log Rule for Integration to integrate a rational function.

Integrate trigonometric functions.

Log Rule for Integration

I Log Rule for Integration

Let u be a differentiable function of .
. 1
(1) /—d:c = In|z|+C

(ii) /%du = Inlu|+C

/

Y dz = In|u|+C
u



I Example1: Using the Log Rule for Integration

2
/ —dx
T
I Example 3: Finding Area with the Log Rule

Find the area of the region bounded by the graph of

T
x24+1

y:

the x-axis, and the linexz = 3.

I Example 5: Using Long Division Before Integrating

2
1
/ Zretl

z2+1




Examples Find

(1) / 4:1:1— 1 dz

2
(i) / 3z° +1 da

3+

2
(i) / iec T dx

anT

z2+zx+1
i —d
(iv) / 211 @

) / (wi—"”wdm

I Example 7: Solve the differential equation

Solve

ﬁ_ 1
dr zlnz

Integrals of Trigonometric Functions



I Example 8: Using a Trigonometric Identity

/ tan xdx

I Example 9: Derivation of the Secant Formula

/ sec zdx

5.8:Inverse Trigonometric Functions:
Integration

¢¢ Objectives

Integrate functions whose antiderivatives involve inverse trigonometric
functions.

Use the method of completing the square to integrate a function.

Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric
Functions



I Integrals Involving Inverse Trigonometric Functions

Let u be a differential function of z, and leta > 0.

= arcsin % +C

1 / du
] Va2 —u?

du 1
2. / PR = -arctan % +C

= 1 arcsec% +C

3 /d_u 1
. uvu? — a? “

Examples Find

_/ dz
\/4—:1:2,
- /d_w
2+ 9z2’
- /d_-'v
a:\/4a:2—9,
- /d_w
Ver —1’
. T+ 2

—4 — dz.

Completing the Square






I Example 5: Completing the Square

Find

/ dr
22 —4x+ 7
I Example 6: Completing the Square

Find the area of the region bounded by the graph of

1

o= e

the g-axis, and the lines ¢ = % and ¢z =

o

5.9: Hyperbolic Functions

¢¢ Objectives

Develop properties of hyperbolic functions (MATH101).
Differentiate (MATH101) and integrate hyperbolic functions.
Develop properties of inverse hyperbolic functions (Reading only).

Differentiate and integrate functions involving inverse hyperbolic functions.
(Reading only).



Circle: 2 + y2 -1

Hyperbola: —mz + y2 =1




Definitions of the Hyperbolic Functions

sinh =

coshz

tanhz =

¥
i
2__
Jllll'l.']:rI of }\ Y
VT 21T Lo [y=sinhx
L - iy | =Sionx |
.-
=—=r [ X
T T J .
S I P
Mgl PR \N
J‘-l_'_ @
U glx)=-
- o

Domain: [ —o5e, 50)

Range: (- o2, oo}

y

y=cschx=

2+ /

] -,

i L i i

I I I =

=] 1

-1+

Domain: (— 2, 0) U {0, o)
Range: (—2¢, 0) U (0, 20)

sinh x
)

sinh z

cosh z

cschx =

sechr =

cothz =

v [ .
4 ¥ =coshx

"

Domain: (—22, o)
Range: [1, 20)

' I

y=sechx=
# cosh x

Domain: {— ¢, o2)

Range: (0. 1]

|

sinh z

tanh z

, ¢ #0

cosh z

¥

29 - :

¥ = tanh .1.'J

I M R\ v

} } ! —=x

-2 -1 1 2

] e e
- 4

Domain: {— o, o)
Range: {

1, 1)

Domain: (— e,

Range: {—oe,

0) U (0, o)
1yuil, oe)



Hyperbolic Identities

cosh? z — sinh? z
2 2
tanh” z + sech’z

coth? z — csch’z

sinh? z

sin 2z

1,

L,

L,

cosh2z — 1
— 9
2 sinh z cosh z,

sinh(z + y)
sinh(z — y)
cosh(z + y)
cosh(z — y)
cosh? z
cosh 2z

sinh x cosh y + cosh z sink
sinh x cosh y — cosh z sink
cosh z cosh y + sinh z sink

cosh z cosh y — sinh z sink

cosh2z +1
2

cosh? z + sinh? z



I Differentiation and Integration of Hyperbolic Functions

Theorem Let u be a differentiable function of .

% (sinhu) = (coshu)v/, / cosh udu
d . , .
o (coshu) = (sinhu)v/, sinh udu
d 2 ! 2
i (tanhu) = (sech’u)u/, sech“udu
d 2 ! 2
. (cothu) = — (csch’u)v/, csch®udu
T
d /
I (sechu) = — (sechutanhu)u/, sech u tanh udu
d ’
I (cschu) = — (cschucothu)u/, csch u coth udu
I Example 4: Integrating a Hyperbolic Function
Find

/ cosh 2z sinh? 2zdz

sinhu + C

coshu + C

tanhu + C

—cothu + C

—sechu + C

—cschu + C



7.1: Area of a Region Between Two
Curves

Objectives

«

Find the area of a region between two curves using integration.
Find the area of a region between intersecting curves using integration.

Describe integration as an accumulation process.

Area of a Region Between Two Curves

move @) n=@ 1



How can we find the area between the two curves?

61 Y

b
Area = / f(=) - g())de

Remark
 Area=Yiop — Ybottom-

I Example1: Finding the Area of a Region Between Two Curves

Find the area of the region bounded above by y = e, bounded below by y = x, bounded on the
sidesbyxz =0and z = 1.



Solution




Area of a Region Between Intersecting Curves

In geberal,
61 Y
y = g(z)
y = f(z)
3__
f f f f f f H
-1 1 2 3 4 5 6
@ Point of instersection
_3 4

b
Area = / |f(z) — g(z)|dz

I Example 2: A Region Lying Between Two Intersecting Graphs

Find the area of the region enclosed by the graphs of f(z) = 2 — 22 and g(z) = =.

Solution in class



I Example 3: A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the curves

y:COS(m), yISin(w), z:O, w:%



I Example 4: Curves That Intersect at More than Two Points

Find the area of the region between the graphs of

f(z) = 323 — z° — 10z, g(x) = —z? + 2z.

Integrating with Respect to y

VA
yv=d
di————
}m
=gy x= fly)

TN

-
0 X

I Example 5: Horizontal Representative Rectangles

Find the area of the region bounded by the graphsof z = 3 — y?andz =y + 1.



7.2: Volume: The Disk Method

¢¢ Objectives

e Find the volume of a solid of revolution using the disk method.
e Find the volume of a solid of revolution using the washer method.
e Find the volume of a solid with known cross sections.

The Disk Method



Solids of Revolution

74T

-

Rectangle

rR

Axis of revolution

Volume of a disk

V = 7R*w

Disk Method



Representative Axis of Representative
rectangle " disk

revolution \ JII.

Plane region
R
x=a =~ x=b
Ax
Sold of " o
volutio pproximation
revolution li:; by n disks
S 2
Volume of solid ~ m[R(z;)] Az
=1
= 7)Y [R(=s)] Az
i=1
Taking the limit ||A|| = 0(n — 00), we get
n 0 b )
Volume of solid = lim 7Y [R(z;)] Az = 7r/ [R(z)] d=.
lAl—=0 4= a
Disk Method

To find the volume of a solid of revolution with the disk method, use one of the formulas below

Ver ("R dx
Py ¢ P LI, )
Wy d ver ["ROIP &’
\ I‘_
R{_r}-: I:ﬂ-.;li_‘l..-’
e i
a b 1 o J
Riy)

Horizontal axis of revolution Vertical axis of revolution



I Example1: Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of
f(z) = Vsinz

and the g-axis (0 < z < ) about the g-axis

I Example 2: Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of
f@)=2-a*

and g(z) = 1 about the liney = 1.

The Washer Method



}r

Axis of revolution

Disk

R

s
)
~

Solid of revolution

Volume of washer = 7(R? — r*)w
Washer Method

Solid of revolution
with hole

|
l
a b

Plane region

b
Ven / [(Rlz])? — (rla])?)dz



I Example 3: Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

y=+z and y = 2

about the z-axis.
I Example 4: Integrating with Respect to "y : Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of
y=a:2—|—1, y=0, z=0, and z=1

about the y-axis

Solids with Known Cross Sections



Example 1 | Example 2

1. For cross sections of area A(z) taken perpendicular to the z-axis,

V= /ab A(z)dz

2. For cross sections of area A(y) taken perpendicular to the y-axis,
d
V= / A(y)dy
c

I Example6:  Triangular Cross Sections

The base of a solid is the region bounded by the lines
T

5 g(m)=—1—|—£ and z=0.

fl@)=1- .

The cross sections perpendicular to the z-axis are equilateral triangles.

Exercise Find the volume of the solid obtained by rotating the region bounded by y = 23,y = 8 , and
z = 0 about the y-axis.

2

Exercise The region R enclosed by the curves y = = and y = z* is rotated about the z-axis. Find the

volume of the resulting solid.

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about
the liney = 2.

Exercise Find the volume of the solid obtained by rotating the region in the previous Example about
the linex = —1.


https://www.geogebra.org/m/XFgMaKTy
https://www.geogebra.org/m/XArpgR3A

Exercise Figure below shows a solid with a circular base of radius 1. Parallel cross-sections

perpendicular to the base are equilateral triangles. Find the volume of the solid.

7.3: Volume: The Shell Method

¢¢ Objectives

Find the volume of a solid of revolution using the shell method.

Compare the uses of the disk method and the shell method.

Problem Find the volume of the solid generated by rotating the region bounded by y = 222 — 3

and y = 0 about the y—axis.

Step1: (J Step 2: (J Step3: (J

The Shell Method



A shell is a hallow circular cylinder

1 r, { Ar

Fq

h

V = 2arhAr = [circumference] [height][thickness]

Cylindrical Shells Illustration

Shell Method



https://www.youtube.com/watch?v=JrRniVSW9tg

Horizontal Axis of Revolution Vertical Axis of Revolution

d b
Volume =V = 27r/ p(y)h(y)dy Volume =V = 27r/ p(z)h(z)dx

h(y) |
d ki _—"""""--..EI _________
i
Ay - » hix)

p(y) :

c a 1 b

|

£
. plx)

Horizontal axis of revolution Vertical axis of revolution

Example: Find the volume of the solid generated by rotating the region bounded by y = 22 — 3

and y = 0 about the y—axis.

Solution:

Example : Find the volume of the solid obtained by rotating about the y—axis the region between

y=zandy = z%



Example: Find the volume of the solid obtained by rotating the region bounded by y = & — z? and
y = 0 about the line z = 2.

I Example4:  Shell Method Preferable

Find the volume of the solid formed by revolving the region bounded by the graphs of
y=z241, y=0, =0, and z=1.

about the y-axis.

I Example 5: Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of y = 2% + 2 + 1,
y=1,andz = laboutthelinex = 2,

7.4: Arc Length and Surfaces of
Revolution

¢¢ Objectives

Find the arc length of a smooth curve.

Find the area of a surface of revolution.

Arc Length



I Arclength

Let the function y = f(x) represents a smooth curve on the interval [a, b]. The arc length of f
between g and b is

§= /ab A/ 1+ [f'(z))?d=.

Similarly, for a smooth curve & = g(y), the arc length of g between cand d is

s = /c d 1+ [ @)]*dy.

I Example 2: Finding Arc Length

21:3

1
Find the arc length of the graph of y = s + 55 0" the interval [%, 2].
z

I Example 3: Finding Arc Length

Find the arc length of the graph of (y — 1)3 = % on theinterval [0, 8].

I Example 4: Finding Arc Length

Find the arc length of the graph of y = In(cos z) fromx = Otoz = w/4.

Area of a Surface of Revolution

I Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting surface is a surface
of revolution.



J “

/ v
Axis of
revolution

«

Surface Area of frustum

r1+ 7o
2

S =2nrL, where r=

Consider a function f that has a continuous derivative on the interval [a, b]. The graph of f is revolved
about the z-axis

w

Axis of
revolution

Surface Area Formula

S = 271'/::1:\/1 + [f'(x)]%d=.

I Definition Area of a Surface of Revolution

Let y = f(x) have a continuous derivative on the interval [a, b].



I
|
fxig
I
I
1

b |
Bmm | mm———m—— o

|
|
I
[
1 -
Axis of E WL
revolution
¥
E
5
2
b
-t
¥
LN

The area S of the surface of revolution formed by revolving the graph of f about a horizontal or

vertical axis is

b
S = 27r/ r(z)4/1+ [f'(x)]?dz, yisa function ofx.

where r(z) is the distance between the graph of f and the axis of revolution.

If £ = g(y) on the interval [¢, d] , then the surface area is

b
S = 27r/ r(y)4/1+ [¢'(v)]?dy, =z isa functionofy .

where r(y) is the distance between the graph of g and the axis of revolution.



Remark

The formulas can be written as
b
S = 271'/ r(z)ds, yisa function of x .
a
and

d
S = 271'/ r(y)ds, « isa functionofy .
C

where

ds=14/1+ [f’(:v)]zda: and ds=14/1+ [g’(y)]zdy respectively.

I Example6:  TheAreaofa Surface of Revolution

Find the area of the surface formed by revolving the graph of f(z) = z2 on the interval [0, 1] about the
T-axis.

I Example 7: The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of f(z) = z2 on the interval [0, x/ﬁ] about
the y-axis.

8.1: Basic Integration Rules

¢¢ Objectives

Review procedures for fitting an integrand to one of the basic integration rules.



Review of Basic Integration Rules ( )



l.fkf[u} du:kff{u} du
2. [ £ =g du= [ 1) dut [g(w)du

3.fdu=u+C

uml
4. | v du = C -1
/u u n+1+ \nF
5.fd;”=1n|u|+c
u

6. fﬁ“ﬁhﬁ =e"+C

- (s

sinudu = —cosu 4+ C

~
=
B
=9
=
[

)a +C

oo
=]~
E::

WO

cos udu = sinu+ C

[
=

tan u du = —In |cos u| + C

cot w du = In |sin u| + C

[y
(3

sec u du = In [sec u + tan u| + C

[y
Ll

csc u du = —In|csc u + cot u| + C

[’
B

sec? udu=tanu+C

[
Ln

cse? udu = —cotu+C

[
=)

Eaﬁmﬂt‘%xﬁmﬁaﬁﬁ&aﬁ&

sec u tan u du = sec u+ C

1?./cscumtudu= —cscu+ C

18 [

U
= arcsin — + C




J Va? — u? a

du 1 U
1‘31'./ﬁ = —arctan — + C
a* + u° i (L
du i
20. | ——— = —arcsec— +C
W —@ a a
I Example 3:

22
Find / A
V16 — z6
I Example4:  ADisguised Form of the Log Rule

dz

Find :
in T

8.2: Integration by Parts

(¢ Objectives

Find an antiderivative using integration by parts.

The integration rule that corresponds to the Product Rule for differentiation is called integration by parts

Indefinite Integrals

/ f(@)d (2)de = f(z)g(z) - / o(@)f' (2)dz

I Integration by Parts

If 4 and v are functions of 2 and have continuous derivatives, then

/udvzuv—/vdu.



I Example1: Integration by Parts
Find / ze®dz.
I Example 2: Integration by Parts
Find /x2 In zdz.
I Example 3: An Integrand with a Single Term
1
Evaluate /0 arcsin zdzx.
I Example 4: Repeated Use of Integration by Parts
Find /w2 sin zdx.
I Example s: Integration by Parts

Find/sec3 zdzx.s

I Example 7: Using the Tabular Method

Find/z2 sin 4xdzx.



8.3: Trigonometric Integrals

¢¢ Objectives

Solve trigonometric integrals involving powers of sine and cosine.
Solve trigonometric integrals involving powers of secant and tangent.

Solve trigonometric integrals involving sine-cosine products.

RECALL

sin?z 4+ cos?z =1, tan’z+1=sec’z, 1+ cot’z = csc?z,

9 1+ cos 2z . 9 1 — cos 2z
cos’c=———709—, sin“z=-—"—
2 2
sinmzsinne = 3[cos(m — n)z — cos(m + n)z],
sinmzcosnz =  3[sin(m — n)z + sin(m + n)),
cosmzcosnz =  3[cos(m —n)+ cos(m + n)),

/tanwd:n=1n|sec:c| +C, /seca:d:r=1n|seca:—|—tan:c|—|—0

/cotwd:c= —In|cscz| + C, /csc:vda:=1n|csc:c—cot:c|—|—0’

Integrals of Powers of Sine and Cosine

/ sin™ x cos™ xdx

—1

« misodd, write as [sin™ ! z cos™ z sin zdz. Example: [ sin® x cos? zdz

e nisodd, write as [ sin™ z cos" ! cos zdz. Example [ sin® z cos® zdz

e m and n are even, use formulae (Example fcosz zdx and fsin4 zdzx)

1 — cos(2z)

1 + cos(2x)
2 ’ ’

cos?(z) = 5

sin?(z) =



I Example1: Power of Sine Is Odd and Positive

Find / sin® z cos* zdz.

I Example 2: Power of Cosine Is Odd and Positive

/3 cosd x

/6 V/sinzx

Evaluate

dz.

I Example 3: Power of Cosine Is Even and Nonnegative

Find / cos? zdz.

Integrals of Powers of Secant and Tangent

/ tan™ z sec” zdzx

n—2

e miseven, write as [tan™ x sec™ 2 sec? zdz. Example [ tan® z sec* zdz

e misodd, write as [tan™ ! z sec™ ! tan z sec zdz. Example [tan® z sec” zdz.

I Example4:  PowerofTangentls Odd and Positive

3
find [ 22 g

SEcC T

I Example 5: Power of Secant Is Even and Positive

Find / sec? 3z tan® 3zdz.



I Example 6: Power of Tangent Is Even

/4
Evaluate / tan* zdz.
0

I Example 7: Converting to Sines and Cosines
sec T

Find/ dx.
tan? z

Integrals Involving Sine-Cosine Products

I Example 8: Using a Product-to-Sum Formula

Find / sin 5z cos 4xdzx.

8.4: Trigonometric Substitution

(¢ Objectives

Use trigonometric substitution to find an integral.

Use integrals to model and solve real-life applications.

Trigonometric Substitution

We use trigonometric substitution to find integrals involving the radicals

va?2—u2, +va?+u? Vu?-—al



I Example1: Trigonometric Substitution

dz
N

I Example2:  Trigonometric Substitution

Find

) dx
Find | ———.
Vaz? +1

I Example 3: Trigonometric Substitution: Rational Powers
dz
Find / __de
(a2 1 1)372
I Example 4: Converting the Limits of Integration

Find

/2 Va2 -3
—dz.
vi T

Applications

I Examples:  FindingArcLength

Find the arc length of the graph of f(z) = 3a%fromz = 0toz = 1.



8.5: Partial Fractions

¢¢ Objectives

Understand the concept of partial fraction decomposition.

Use partial fraction decomposition with linear factors to integrate rational
functions.

Use partial fraction decomposition with quadratic factors to integrate rational
functions.

Partial Fractions
We learn how to integrate rational function: quotient of polunomial.

_ P()
Q)

f(z)

P, @ are polynomials

How?
m STEP o : if degree of P is greater than or equal to degree of () goto STEP 1, else GOTO STEP 2.

m STEP 1: Peform long division of P by @ to get

P(z)
Q()

R(x)
Q(x)

= S(z) +

R(z)
Q(z)

and apply STEP 2 on
m STEP 2 : Write the partial fractions decomposition

m STEP 3 : Integrate



Partial Fractions Decomposition

We need to write % as sum of partial fractions by factor Q(x). Based on the factors, we write the

decomposition accoding to the following cases
case 1: Q(z) is a product of distinct linear factors. we write
Q(z) = (a1 + b1)(asx + b2) - - - (arx + bg)

then there exist constants Ay, As, -+ -, Ag such that

R(.’I:) Al A2 Ak
= —|— —|— . e + - v
Q(ZE) a1z + by asx + bs arx + by,

case 2: Q(x) is a product of linear factors, some of which are repeated. say first one
Q(z) = (a1z + b1)"(azx + b3) - - - (arx + by)
then there exist constants By, Bs, - - - By, Ag, - - -, A such that

R(a:) o Bl + B2 + B,- 4 A2 + 4 Ak
Q(z) |aixz+b (a1z + b1)? (a1 +b1)" asx + by arx + by

case 3: () contains irreducible quadratic factors, none of which is repeated. say we have (Note: the
quadratic factor az? + bz + c s irreducible if b2 — 4ac < 0). For eaxmple if

Q(z) = (az? + bz + c)(a1z + by)
then there exist constants A, B, and C such that

R(z)  Az+B n C
Q(z) ax?2+br+c ax+b

case 4: @Q(x) contains irreducible quadratic factors, some of which are repeated. For example if
Q(z) = (az? + bz + ¢) (a1 + by)
then there exist constants A1, By, Aa, Ba, -+ A, B, and C such that

R(w) Ala: + Bl Agw + 32 Arili + Br C
= e e _|_ _|_
Q(z) ax?+bx+c (axz?+ bx + c)? (az? + bz + c)" a1z + by




I Example: Partial Fractions

Write out the form of the partial fractions decomposition of the function

+z+1

z(z—1)(z+1)2(z2 + x4+ 1) (22 + 4)?

More Examples

Find
1
(1) /mdw
522 + 20 6
@) / a:i" —:_2:1:;—:_3: da-
2¢3 — 4z — 8
(3) (wf_ 3 (52 o
8z3 + 13
(4) ﬁdw.
3
(5) / "‘;jfdw.
2 +2c—1
(6) / 2:1:3 —I_—|_3a:a; — 2z de.
(7) / — where a # 0
(8) / —222 . ix:ll da
2x° — 4
) / mz3 -|-$4::_ de
4 — 3 2
(10) / 422 —4::3‘”’
1— 2+ 22% — o3
(11) / ;E; f1)2 T iz
Remarks

/ dx 11 ‘z—a
_ — —1n
x?2 — a2 2a z+a




Rationalizing Substitutions Find

1) [ @dm.

@) [

8.7: Rational Functions of Sine &
Cosine

Special Substitution (u = tan (%), —m < x < ) (for rational functions of sin x and cos x)
_ 2 o 1-—? . 2
dr = Tra? du, cost = 1T SNz = 775

dx
1 .
(1) /3sina: 4cosx
sin 2z dx
2) /

2—|—cos:1:

8.8: Improper Integrals

(¢ Objectives

o Evaluate an improper integral that has an infinite limit of integration.
o Evaluate an improper integral that has an infinite discontinuity.

Do you know how to evaluate the following?

(1) f°° Ldr (Typel)

(2) Jy sirde (Type?2)



Improper Integrals with Infinite Limits of
Integration

(a) Iffat f(x)dz exists for every number ¢ > a, then

/aoo f(z)dz = tllglo /: f(z)dz

provided this limit exists (as a finite number).

(b) lfj;b f(x)dx exists for every number ¢ < b, then

/_io f(z)de = tgr_noo /tb f(z)d=

provided this limit exists (as a finite number).

The improper integrals fa°° f(z)dz and ffoo f(z)dz are called convergent if the corresponding

limit exists and divergent if the limit does not exist.

(@) Ifboth [° f(z)dz and ffoo f(x)dz are convergent, then we define

/_: f(z)dz = /_Zo f(z)dz + /aoo f(z)dz

In part (c) any real number can be used



Example: Determine whether the following integrals are convergent or divergent.

(1) /1 h %dm
(2) /100 %dw
(3) /000 e "dx

e 1
4 d
@) /_001”2 .

t= @ 1
6T 6T
1 1
54 51
fldx:0.0 dex:OO
4 z oL J 2
1 1
34 34
24 24
14 1+
: .
PR B o> A2 L o> A2



Remark

o0

1

/ —pda: is convergent if p > 1 and divergent if p < 1.
1 &

Improper Integrals with Infinite
Discontinuities



(a) If f is continuous on [a, b) and is discontinuous at b, then

/ab f(z)dz = tlixgl_ /at f(z)dz

provided this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

b b
[ fe)ia = tim [ f(@)do

provided this limit exists (as a finite number).

The improper integral f: f(z)dzx is called convergent if the corresponding limit exists and
divergent if the limit does not exist.

(¢) If f has a discontinuity at ¢, where @ < ¢ < b, and both [* f(z)dz and fcb f(z)dz are

convergent, then we define

/ab f(z)dz = /ac f(z)dx + /cb f(z)dz

Example:

1) [, e
2) [, sde

(3) fol In zdz



I Example 9: Doubly Improper Integral

Evaluate

/°° dz
o Vz(z+1)
9.1: Sequences

¢¢ Obijectives

Write the terms of a sequence.

Determine whether a sequence converges or diverges.

Write a formula for the th term of a sequence.

Use properties of monotonic sequences and bounded sequences.

Sequence: A sequence can be thought of as a list of numbers written in a definite order:
a1,02,a3,° " ,0p," "

e aj: first term,
e as: second term,
e ags: third term,

e a, nterm,

For example:

. 1,2,3,-
. 1,1/2,1/3,---
° —]_,]_,_]_,...

Notation:

o {a1,as,a3,---,an, -} ={ap}or
e {al,az,as, *tyQpy e } = {a’n}:;l



More examples

n

: {73)"(n+1) )

5n

(i)

o0

n=4

ai =1ay=1,a, =a,_1+ a,_2 (Fibonacci sequence)

n=1 |
Example 1
O @iy
1
a, = = =0.5
19
0.2 0.4 ° 0.6 0.8 1.0 '

Visualization

1.0n a number line (as above)

2. By plotting graph

n=1 |

1.2



Example 1 (Graph)

1.5+ .,
o aninJrl
1.0+
1
0.5-D a, = ==0.5
1 2
50 100 150 200
n= 1
Example 2 (Graph)
1.0
© o D
-
—1-2
0.5 4 al — 1 —_ — 0.4
5
50 100 150 200

—0.51

-1.0-



Example 3 (Graph)

100 +

(@)

75

50+ a4:«/6:0.0

25

25 50 75 100

What are trying to study?

e convergence (what happended when n gets larger and larger n — 00)

For Example 1: a,, = 27, it is fair to say and write

lim —— =1
n—soo n 4+ 1

€ =10 n=1



Example 1 (Graph)

3_
o n = nil
L+ ¢
2__
1__
L - E‘?IS 5|0 7'5
Example

{(-1)"} ={-1,1,-1,1,-1,1,--}



2__
o an:(_l)n
1__
L+¢ | | |
L — a5 50 75 100
~1de
_2__
Remark:

lim (—1)" DNE

n—00

Limit of a Sequence

Let L be a real number. The limit of a sequence {a, }isL™", written as

lim a, = L

n—o0
if for each € > 0, there exists M > 0 such that |a, — L| < e whenevern > M. If the limit L of a
sequence exists, then the sequence converges to L. If the limit of a sequence does not exist, then
the sequence diverges.



I Limit of a Sequence

If
lim f(x) =L and f(n)=a, whennisan integer,
T—00
then
lim a, = L.
n—o0
» Remark
1 .
lim —=0 if r>0
n—oo N’

Limit Laws for Sequences Suppose that {a,} and {b, } are convergent sequences and c is a constant.
Then

1. Sum Law

lim (a, +b,) = lim a, + lim b,
n—00 n—00 n—o00

2. Difference Law

lim (a, — b,) = lim a, — lim b,
n—00 n—00 n—o00

3. Constant Multiple Law

lim ca, = ¢ lim a,
n—00 n—00

4. Product Law

lim (a,b,) = lim a, - lim b,
n—00 n—o00 n—o00

5. Quotient Law

:
lim 2o — 2Mnoeon e i by £ 0

n—00 bn limn oo bn n—00



Power Law

P
lim af = [11m an]
n—00 n—00

Squeeze Theorem for Sequences

Ifa, <b, <c, forn > ngand lim,_ a, = lim,_,» ¢, = L, then

lim b, = L.
n—00
Theorem
If
lim |a,| =0,
n—00
then
lim a, = 0.
n—r00
Theorem

If lim,, o0 @, = L and the function f is continuous at L, then

7}1—>Holo flan) = f(L).

Remark

The sequence {r™} is convergent if —1 < r < 1 and divergent for all other values of 7.

0 if -1<r<1,

lim »" =
n—ro0

1 if r=1



Examples
Find

1.limy 00 (1+ )"

2.1im,, oo ST -

3.limy, o0 - -
n

4.1im,,_, TSR
5. ].imn_)w T e

6.limy 400 ~—
7.lim, o sin (7/n).

. n!
8. ].lmn_)w F.
: (="
9.limy, 00 ~—i—-
Exercise
.. n"
lim —
n—oo M

Pattern Recognition for Sequences

Example

Find a sequence {a, } whose first five terms are

1,3a5a 7a 9 3t
and then determine whether the sequence you have chosen converges or diverges.

Example

Find a sequence {a,, } whose first five terms are

26 80 o2
67247 120°

28
1’2

and then determine whether the sequence you have chosen converges or diverges.



Monotonic and Bounded Sequences
Definition

e Asequence {a,} is called increasing if a, < an41 foralln > 1, thatis,a; < as <ag <---.
e ltis called decreasing ifa, > a1 foralln > 1.
e Asequence is called monotonic if it is either increasing or decreasing.

Examples

Is the following increasing or decreasing?

n

2-{n2—+1 -

Definition

A sequence {ay} is bounded above if there is a number M such that
ap <M foralln>1

A sequence is bounded below if there is a number m such that
m<a, foralln>1

If a sequence is bounded above and below, then it is called a bounded sequence.

Monotonic Sequence Theorem
Every bounded, monotonic sequence is convergent.

In particular, a sequence that is increasing and bounded above converges, and a sequence that is

decreasing and bounded below converges.

Example

1
a1 =2, Qpi1= E(an—l—G), forn=1,2,3,---



9.2: Series and Convergence

¢¢ Objectives

e Understand the definition of a convergent infinite series.
o Use properties of infinite geometric series.
e Use the th-Term Test for Divergence of an infinite series.

Infinite Series

Consider the sequence {an }.- ;. The expression
ay+as+ag+---

is called an infinite series (or simply series) and we use the notation

o0

n=1

To make sense of this sum, we define a related sequence called the sequence of partial sums

{sn}?;l as

81 = ai
S = ai-+tas
S = aj-+ag-+as
n
sn = a1taxt-tan=>3;,a;

and give the following definition



Definition

Given a series Ef:’:l a, = a1+ as+ag—+---,let s,denote its nth partial sum:

Sp= ) a;=ai+az+---+an

n
i=1

If the sequence {s,} is convergent and lim,,_,, 8, = 8 exists as a real number, then the Y ay,series
is called convergent and we write

[o.°]
E a,=ai1+ax+az+---=s
n=1

The number s is called the sum of the series.
If the sequence {s,} is divergent, then the series is called divergent.

Remark

n

o0

E a, = lim s, = lim E a;
n—00 n—o00 £

n=1 =1

Exercise Assume that {an } - ; is a sequence.

1. Find

2.Canyou find a,?



Solution

1. We find first

1i — L n+2 1
nl—{{olosn_nl—)nolo 3n—5 3

since the sequence {s, } converges to % then the series converges and its sum is

n=1
2. Note that
— _ _ nt+2 _ (n-1)+2
n = 8n = 8n-1= 3,75 ~ 3(n_1)-5

nt+2  n+l
3n—5 3n—8

_ (n+2)(3n—8)—(n+1)(3n—5)

o (3n—5)(3n—8)

SO,

B —11
~ (3n—5)(3n — 8)

an

Telescoping sum

Find the sum of the following series
io: 1
“— n(n +1)

Solution in class

Recall

lim " =
n—roo

0 if |r|<1(-1<r<1l),
1 if r=1,

So {r"} converges ifr € (—1, 1] and diverges otherwise



Geometric Series

The series
o0
a—l—ar+ar2—|—---=§:arn_1, a#0
n=1

is called the geometric series with common ration r

It is convergent if [r| < 1 and its sum is

and divergent if |r| > 1.

Remark In words: the sum of a convergent geometric series is

first term

1 — common ratio

Examples

1. Find the sum of the geomtric series

4 -3+ - - —
* 4 16 *
2. s the series
[e9)
Z 22" 31=m  convergent or divergent?
n=1

3. Write 2.7 as rational number (ratio of integers).

4. Find the sum of the series

o0
an where |z| < 1.

n=0



Test for Divergence

Example Show that the harmonic series

$1_,1,1,L,
—n 2 3 4
n=1
is divergent.
Theorem |f the series
o0
e
n=1
converges, then
lim a, = 0.
n—o0

Proof

an = 8p — Sp—1
Divergence Test

o0
If lim a, #0 or lim a, DNE then the series Z a, is divergenet
n—00 n—oo

n=1
Example

The series Z 2112—_:_5 is divergent.
n

n=1



Properties of Convergent Series

Theorem If Y a,, and ) by, are convergent series, then so are the series » | ca,, (where cis a
constant), »_(an + by), and Y (a, — by,), and

(i) Eff;l can c Efzo:l an

(i) doi(@nt+bn) = Yolian+D 00 b,

(i) dooti(an—bn) = Yo ian— 07 b,

Remarh

If it can be shown that

is convergent. Then

is convergent.



9.3: The Integral Test and p-Series

¢¢ Objectives

o Use the Integral Test to determine whether an infinite series converges or diverges.

e Use properties of -series and harmonic series.

The Integral Test and Estimates of Sums
Suppose f a function that is

1. continuous on [1, 00),
2. positive on [1, 00),

3. decreasing on [1, 00)

and let a, = f(n). Then the series
D_an
n=1

is convergent if and only if the improper integral

/100 f(z)dz

is convergent. In other words:

(o, ¢] o0
1. If/ f(z)dx is convergent, then is Z an convergent.
1

n=1

oo (o9}
2. If/ f(z)dz is divergent, then is Z ay, divergent.
1

n=1

Examples

Test for convergence

Solution in class



Remark

1 =1
The series E — is convergent but E — # 1.
n n
n=1 n=1

71.2

o0
1
It sum is actually equal to E =%
n

n=1

P-series and the Harmonic Series

o0
1
The p — series Z P is convergent if p > 1 and is divergent if p < 1.

n=1

1.3 00 -L_ is divergent; because it is a p—series with p = % <1

n3
2.3, # is convergent; because it is a p—series withp = 3 > 1.

Example

Show that

is divergent.



Estimating the Sum of a Series

Suppose that the integral test is used to show that

> an
n=1

is convergent. So its sequenc of partial sums {sn = Z?:l ai} is convergent; that is

lim s, = s.
n—o0

So we can write

R, is the Remainder or the error when s, is used to approximate s.



n n+1 n-+ 2 n+3 n+4 n+5 n+ 6 n+7 n+8 n+ ¢

0
R, =apy1+apie+an3+--- < / f(:l))dil)
n

n n+1 n-+ 2 n+3 n+4 n+5 n+ 6 n+7 n+8 n+ ¢

o0
R,=apy1t+ap2t+an3+---2 / f(:z:)da:
n+1



(0.005, 0.00413223)
1/200, 1/242

Remainder Estimate for the Integral Test Suppose f(k) = ay, where fis a continuous, positive,

decreasing function for £ > nand Y ay is convergent. If R, = s — s, then

/7:1 f(x)de < R, < /noo f(z)dz

9.4: Comparisons of Series

¢¢ Objectives

e Use the Direct Comparison Test to determine whether a series converges or diverges.

e Use the Limit Comparison Test to determine whether a series converges or diverges.

The Comparison Tests

The Direct Comparison Test

Suppose that Y a,, and ) by, are series with positive terms.

e If )" by, is convergent and a,, < by, for all i, then > ay, is also convergent.
e If) by, isdivergentand a, > by, forall n, thenis > a,, also divergent

Remarks
e Most of the time we use one of these series:

o p—series Y
o geometric series.

Examples Test for convegence

00 5
(1) ol svias

(2) Yo B



The Limit Comparison Test

Suppose Y, a, that and Y by, are series with positive terms. If

where c is a finite number and ¢ > 0, then either both series converge or both diverge.
Remark
Exercises 40 and 41 deal with the casesc =0ande¢ = oo .

Examples Test for convegence

8) X0 7o

00 2n2+3n
(4) En:l N

Exercises

Test for convegence

(5) Yomoy 23

6) >0l i



9.5: Alternating Series

€€ objectives

e Use the Alternating Series Test to determine whether an infinite series converges.

e Use the Alternating Series Remainder to approximate the sum of an alternating
series.

e Classify a convergent series as absolutely or conditionally convergent.

e Rearrange an infinite series to obtain a different sum.

An alternating series is a series whose terms are alternately positive and negative. For examples:

1 1 1 1 1 > 1
1—- 4 - 4 - 4= —1)r-1) =
2+3 4+5 6+ Z( ) n

n=1
1 2 3 4 5 6 cc n
_—— _— — RN —_— — t e — —1n
273 175 67 2 (D"

o0 o0
alternating series Z an, = Z(—l)"‘lbn
n=1

n=1

Alternating Series Test

If the alternating series

Y (1) by =by —by+bs —ba+bs—bg+--- (b >0)

n=1
satisfies the conditions

(i) bpt1 < b, for alln

then the series is convergent.

n-@ 1



Proof

(oX4

Example Test for convegrnce

1 Yo,

(2 XL (D gt

(3) TaL(-yrEy

Estimating Sums of Alternating Series

If s = > (—1)""'by,, where b, > 0, is the sum of an alternating series that satisfies

then

(i) bpy1 <b, and

(i) limpoobp =0

|Rn| = |3 - 3n| < bn+1



Example How many terms of the series

X (=1 n+1
3 %

n=1

do we need to add in order to find the sum accurate with |error| < 0.000001?

Absolute Convergence and Conditional Convergence

* Aseries ) ay, is called absolutely convergent if the series of absolute values ) |ay| is
convergent.

e Aseries Y ay, is called conditionally convergent if it is convergent but not absolutely
convergent; that is, Y | a, if converges but ) | |a,| diverges.

Theorem
If a series ) ay, is absolutely convergent, then it is convergent.

Examples Determine whether the series is absolutely convergent, conditionally convergent, or
divergent

. ') —-1)?
@ xR

i —y, LY

eoo ') -1)"
() X, G

(v) 2211 (=1)" 2an|—1



9.6: The Ratio and Root Tests

¢¢ Objectives

e Use the Ratio Test to determine whether a series converges or diverges.
e Use the Root Test to determine whether a series converges or diverges.
e Review the tests for convergence and divergence of an infinite series.

The Ratio Test

2l | = [, < 1, then the series is absolutely convergent

(i) If lim, oo P

(and therefore convergent).

(i) If limpoo (22| = L > 1or lim, o |22 | = oo,
then the series is divergent
(iil)) Iflhim, e a;:l | =1, the Ratio Test is inconclusive;

that is, no conclusion can be drawn about
the convergence or divergence of ) | a,.

The Root Test

(i) If lim, e v/|an| = L < 1, then the series is absolutely convergent
(and therefore convergent).

(ii)) If lim, yo0 4/|an| = L > 1 or lim,_, v/|as| = o0,
then the series is divergent

(iii) Iflim, 0 v/|an| =1, the Ratio Test is inconclusive.



Examples Test for convergence

1 D, e
2 Y (-)rE

3) X (33)"

-1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0

[cos(mxn) for n in 1:10]

9.7: Taylor Polynomials and
Approximations

(¢ Objectives

e Find polynomial approximations of elementary functions and compare them with
the elementary functions.
e Find Taylor and Maclaurin polynomial approximations of elementary functions.

e Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary
Functions

For the function f(z) = €7, find a first-degree polynomial function P;(z) = a¢ + a1x whose value
and slope agree with the value and slope of atz = 0.

® Show
OHide
n=0



3.0

Py(xz) =1
— ) =e
25—
20T
1.5+
0.5
| I I
-4 -2 2
-0.5-+

Taylor and Maclaurin Polynomials

I of th Taylor Polynomial and th Maclaurin Polynomial

If f has m derivatives at ¢, then the polynomial

" (n)
Pu(@) = £(0) + £ —0) + L\ @~ gt 4. L200
is called the nth Taylor polynomial for f ate. If ¢, then
n (’n)
Pa(z) = £(0) + £(0)z + 112 (0) IR i n'(O)

is also called nth th Maclaurin polynomial for f.

(z

— c)"



I Example3:  AMaclaurin Polynomial for enx



I Example 4: Finding Taylor Polynomials for Inx

Find the Taylor polynomials Py, Py, Py, Ps, and Py for

f(z) =Inz

centered atc = 1.
I Examples: Finding Maclaurin Polynomials for cosx

Find the Taylor polynomials Py, Py, Py, and Pg to approximate cos(0.1).
I Example 6: Finding Taylor Polynomials for sin x
Find the Taylor polynomial Psfor

f(z) =sinz

centered at ¢ = /6.
I Example 7: Approximation Using Maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of In(1.1).

9.8: Power Series

(¢ Objectives -Understand the definition of a power series.

e Find the radius and interval of convergence of a power series.
e Determine the endpoint convergence of a power series.

 Differentiate and integrate a power series.

A series of the form

ian(a:—c)” =ao+01(€B—C)—|—a2(a:—c)2—|—a3(a;_c)3_|_..,

n=0

is called a power series in (x — c) or a power series centered at ¢ or a power series about ¢

We are interested in finding the values of & for which this series is convergent.



Radius and Interval of Convergence

Theorem For a power series > o an(z — €)™, there are only three possibilities:
(i) The series converges only when z = ¢.
(ii)The series converges for all .

(iii) There is a positive number R such that the series converges if [z — ¢| < R and diverges if
|z —¢| > R.

Remarks

e The number R is called the radius of convergence of the power series.
o The radius of convergence is R = 0 in case (i)
o R = ooin case (ii).
 The interval of convergence of a power series is the interval that consists of all values of for
which the series converges.
o In case (i) the interval consists of just a single point a.
o In case (i) the interval is (—o0, 00).

I Examples:

o0

(1) Zn!m”

@ >
1 n 2n
@3 3! (2)71),

n=0

Endpoint Convergence



Examples

Find the radius of convergence and interval of convergence of the series

fo'e) —1)"z™
(4 T,k
(5) T, M

Differentiation and Integration of Power
Series

(term-by-term differentiation and integration)
Theorem

If the power series Y, an (2 — ¢)™ has radius of convergence R > 0, then the function f defined by
o0
f(z) =ag+ai(x—c)+ax(z—c)?+---= Zan(w —o)"
n=0

is differentiable (and therefore continuous) on the interval (a — R, a + R) and

(i) f’(iE) = a1+2a2(a:—c)+3a2(a;—c)2_|_...

ey nan(z — o)™

@) [f@dz = C+aole—c)+ar®L +a &2 4.
= C+Troan'

The radii of convergence of the power series in Equations (i) and (ii) are both R.



I Example 8: Intervals of Convergence

Consider the function

fa) =3 o

n=1

Find the interval of convergence for each of the following.

1. f(x)
2. f'(=)

3. /f(a:)da:

9.9: Representation of Functions by
Power Series

¢¢ Objectives

e Find a geometric power series that represents a function.

e Construct a power series using series operations.

Geometric Power Series

1 o0
m=1+w+m2+m3+-~=§$n, |z| < 1.



Examples

1. Express as the sum of a power series and find the interval of convergence.

1
xr)=
2. Find a power series representation for
1
r)=
/(=) T+ 2
3. Find a power series representation for
3
T
r)=
f(=) T+ 2

4. Find a power series representation around 1 for
1
r)=—
flz) =

SOLUTION IN CLASS

Let f(z) = Zanm” and g(z) = Z bnz™.
n=0

n=0

1. f(kx) = iank":p”.
n=0
2. f(zN) = Zan:cN”.

n=0

3. f(z) £ g(z) = i(an + b,)z".
n=0



Examples

4. Express as a power series

f(z) =

4. Express as a power series

f(z) =

5. Express as a power series

f(@) = In(1 + o)

6. Express as a power series

3z —1

1
(1

2 —1

o

f(z) =tan™'z

7. Evaluate

/

8. Approximate 7

SOLUTION IN CLASS

dz
1+ 27




9.10: Taylor and Maclaurin Series

[~ ]
[r5%]: Students have to memorize the power series representations of the functions
f(z) = H%, e®,sin z, cos ¢, arctan z, (1 + )* in page 674.

¢¢ Objectives

e Find a Taylor or Maclaurin series for a function.
e Find a binomial series.

e Use a basic list of Taylor series to find other Taylor series.

e By the end of this section we will be able to write the following power series representations of

certain functions

0 = = Yo" = ltzta+ad+--, R=1
(@) Wm+e) = TLD"E = - s+ -f4e R=1
@) tantz = TE(DET = e-FEFoF 4o R=1
(@) e = SXodr = l+ftg R = oo
®) sinz = EX(D'gmy = e-EFHE o R = oo
(6) cosz = E,iio(—l)"(“éz! - 1‘%?"‘%‘%?"’"', R =00
k _ 1) (k—
7 1+wk — °°= wn — 1+kw+k(k'1)$2+k(k 1)'(k 2)$3+"', R:1
n=0 n 2! 3!



I Taylor Theorem

If f has a power series representation (expansion) at a , that is, if

o0
f(z) = ch(w —a)", |lz—¢/ <R
n=0
then its coefficients are given by the formula

_ ")

n!

Cn

Remarks

e Theseriesis called the Taylor series of the function f ata (or about a or centered at a).
e (Maclaurin Series) Ifa = 0, Taylor series becomes

o £(n) / " m
f@) =3 T Oan g0y L0 T 2 T sy
n=0 ° B . :

Examples (important)

e Find Maclaurin series for
1) f(z)=e€"
(2) f(z) =sinz
(3) f(z) =cosz

ooy

e Find Taylor Series of f(z) =sinz  about

The Binomial Series

Example: Find the Maclaurin series for f(z) = (1 + z)*, where k is any real number.

Solution: In Class



The Binomial Series (Theorem)

If k is any real number and |z| < 1, then

(1+m)k=§:<:)m”=1+km+mm2+ k(k_l)(k_2)m3+---

s 2! 3!
where
<k) _ k(k—=1)(k—2)---(k—n+1)
n n!
Remarks

e This is called binomial coefficients. Note that

(k) =0 if kisintegerand k <n

O 0

e If-1 < k<0, itconvergesatz = 1.
e Ifk > 0itconverges atx = +1.

Example

Find the Maclaurin series for the function

1
4—x

flz) =

and its radius of convergence.



Deriving Taylor Series from a Basic List
Check the table
Examples

e Find the Maclaurin series for

(a) f(z) =zcosz
(b) f(z) =In(1 + 3z2)

 Find the function represented by the power series

0 ANy
> (=1
n=0 n!

e Find the sum of the series

More Examples

e Evaluate
2
/e Tdr
e Evaluate
. ef—-1—z
lim ————
z—0 a’;z

Find the first 3 nonzero terms of Maclaurin series for
(a) €sinz (b) tanz

Find the sum of

2n+1

(a) Za;_' (®) ;(_1)n42n+f(2n+1)!




begin

end

using
using
using
using
using
using
using
using

FileIO, ImageIO, ImageShow, ImageTransformations
SymPy

PlutoUI

CommonMark

Plots, PlotThemes, LaTeXStrings

HypertextLiteral
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Random



